Friday 26 January 2018

متوسط تمثيل تمثيل أر (1)


النظر في عملية أر ثابتة (2) التي قدمها X - X 0.25X 5 أ حيث سيم ون (0،1) (الضوضاء البيضاء). أنا مهتم في الحصول على التمثيل السببي لذلك، وهو ما يمثل X ديسبلايستيلسوم يسي a (أي ما (إنفتي) العملية). ويضمن هذا من خلال افتراض الاستقرارية. أريد تحديد يسي ل j 1،2،3،4،5. أستطيع أن أفعل هذا بسهولة، ولكن إيم يجري التخلص من وجود 5 على الجانب الأيمن. هل تجاهله أو أن أكون مسؤولا عن ذلك بطريقة ما سألت في بعض الطريق يوليو 21 14 في 19: 33 متوسط ​​المتوسط ​​التمثيلي للتقريبات الانحدار الذاتي نحن ندرس خصائص ما (إنفين) - تمثيل تقريب الانحدار الذاتي ل ثابت، ريال مدريد القيمة معالجة. في القيام بذلك نعطي تمديد نظرية وينرز في الإعداد التقريبي حتمية. عند التعامل مع البيانات، يمكننا استخدام هذه النتيجة الرئيسية الجديدة للحصول على نظرة ثاقبة على هيكل ما (إنفين) - تمثيل نماذج الانحدار الذاتي المجهزة حيث يزيد ترتيب مع حجم العينة. على وجه الخصوص، ونحن نقدم موحدة ملزمة لتقدير معاملات المتوسط ​​المتحرك عن طريق التقريب الانحدار الذاتي يجري موحدة على جميع الأعداد الصحيحة. أر (إنفين) تحليل مجمع السببية تحليل الاستجابة الدالة وظيفة خطية عكسية ما (إنفين) خلط السلاسل الزمنية وظيفة النقل عملية ثابتة المراجع الارتباط الذاتي، الانحدار الذاتي والانحدار الذاتي التقريبي آن. الدولتية. 10 (1982)، ب. 926x2013936 كور: الترابط الذاتي، الانحدار الذاتي وتقريب الانحدار الذاتي آن. الدولتية. 11 (1982)، p. 1018 التقديرات الطيفية للانحراف الذاتي المتسقة آن. الدولتية. 2 (1974)، ب. 489x2013502 تقدير التمثيل المتوسط ​​المتحرك لعملية ثابتة بواسطة نموذج الانحدار الذاتي المناسب J. سلسلة الوقت الشرج. 10 (1989)، ب. 215x2013232 تقدير الانحدار الذاتي للتنبؤات يعني خطأ مربع وقياس R2: تطبيق د. المثقاب، P. كاينز، J. جيويك، E. بارزن، M. روزنبلات، M. S. تاقو (إدس.)، الاتجاهات الجديدة في تحليل السلاسل الزمنية، سبرينجر، نيويورك (1992)، ب. 9x201324 الجزء الأول خلط الملكية والوظيفية الحد المركزي النظريات ل بوتستراب المنخل في سلسلة زمنية تيش. ريب. 440Dept. أوك بيركلي، بيركلي، كاليفورنيا (1995) تحليل البيانات والنظرية، هولت، رينيهارت ونستون، نيويورك (1975) سلسلة الوقت: نظرية وطرق سبرينغر، نيويورك (1987) غربال التمهيد للمسلسلات الزمنية تيش. ريب. 431 ديبت. أوف ذي ستاتيستيكش، أوك بيركلي، بيركلي، كا (1995) ذي ستاتيستيكال ثوري أوف لينير سيستمز وايلي، نيو يورك (1988) بروبيرتيز أند إكسامبلز، ليتيور نوتس إن ستاتيستيكش، فول. 85. سبرينجر، نيويورك (1994) تركيب نماذج السلاسل الزمنية Rev. إنترنات. الدولتية. انست. 28 (1960)، ب. 233x2013244 أساليب بوتستراب: نظرة أخرى على جاكنيف آن. الدولتية. 7 (1979)، ب. 1x201326 الخواتم المعتادة التبادلية تشيلسي، نيويورك (1964) راتيونال ترانسفر فونكتيون أبروكسيماتيون ستات. الخيال العلمي. 5 (1987)، ص 105x2013138 الانحدار، نماذج الانحدار الذاتي J. الوقت سلسلة الشرج. 7 (1986)، ب. 27x201349 الاستدلال الإحصائي المتناظر لفئة من العمليات العشوائية هابليتاتيونسشريفت، ونيفرزيتوملت هامبورغ، هامبورغ، ألمانيا (1988) خصائص متقلبة للمقدر الطيفي الانحداري الذاتي دكتوراه. thesisDept. الإحصائيات، جامعة ستانفورد، ستانفورد، كا (1970) التنبؤ سلسلة زمنية متعددة المتغيرات من قبل الانحدار الذاتي نموذج المناسب J. متعدد المتغيرات الشرج. 16 (1985)، ب. 393x2013411 تحليل التقارب لطرق تحديد البارامترية إيي ترانز. المطعم الآلي. كونترول أس-23 (1978)، ب. 770x20137832.1 موديلات متوسط ​​الحركة (نماذج ما) قد تتضمن نماذج السلاسل الزمنية المعروفة باسم نماذج أريما مصطلحات الانحدار الذاتي ومتوسطات المتوسط ​​المتحرك. في الأسبوع الأول، تعلمنا مصطلح الانحدار الذاتي في نموذج سلسلة زمنية للمتغير x t قيمة متخلفة من x t. على سبيل المثال، مصطلح الانحدار الذاتي 1 تأخر هو x t-1 (مضروبا في معامل). يحدد هذا الدرس مصطلحات المتوسط ​​المتحرك. متوسط ​​المتوسط ​​المتحرك في نموذج السلاسل الزمنية هو خطأ سابق (مضروبا في معامل). واسمحوا (W أوفيرزيت N (0، sigma2w))، بمعنى أن w t هي متطابقة، موزعة بشكل مستقل، ولكل منها توزيع طبيعي يعني 0 و نفس التباين. (1) هو (شت مو وت theta1w) نموذج المتوسط ​​المتحرك الثاني، الذي يشير إليه ما (2) هو (شت مو wtta1w theta2w) ، التي يرمز إليها ما (q) هو (شت مو وت theta1w ثيتاو w النقاط ثيتاكو) ملاحظة. العديد من الكتب المدرسية والبرامج البرمجية تحدد النموذج مع علامات سلبية قبل الشروط. هذا لا يغير الخصائص النظرية العامة للنموذج، على الرغم من أنه لا يقلب علامات جبري لقيم معامل المقدرة و (غير مسقوفة) المصطلحات في صيغ ل أكفس والتباينات. تحتاج إلى التحقق من البرنامج للتحقق مما إذا كانت العلامات السلبية أو الإيجابية قد استخدمت من أجل كتابة النموذج المقدر بشكل صحيح. يستخدم R إشارات إيجابية في نموذجه الأساسي، كما نفعل هنا. الخصائص النظرية لسلسلة زمنية مع ما (1) نموذج لاحظ أن القيمة غير صفرية الوحيدة في أسف النظري هو تأخر 1. جميع أوتوكوريلاتيونس الأخرى هي 0. وبالتالي عينة أسف مع ارتباط ذاتي كبير فقط في تأخر 1 هو مؤشر لنموذج ما (1) ممكن. للطلاب المهتمين، والبراهين من هذه الخصائص هي ملحق لهذه النشرة. مثال 1 افترض أن نموذج ما (1) هو x t 10 w t .7 w t-1. حيث (الوزن الزائد N (0،1)). وبالتالي فإن معامل 1 0.7. وتعطى أسف النظرية من قبل مؤامرة من هذا أسف يتبع. المؤامرة فقط أظهرت هو أسف النظري ل ما (1) مع 1 0.7. ومن الناحية العملية، لن توفر العينة عادة مثل هذا النمط الواضح. باستخدام R، قمنا بمحاكاة n 100 قيم عينة باستخدام النموذج x t 10 w t .7 w t-1 حيث w t إيد N (0،1). لهذه المحاكاة، وتتبع مؤامرة سلسلة زمنية من بيانات العينة. لا يمكننا أن نقول الكثير من هذه المؤامرة. وتأتي العينة أسف للبيانات المحاكاة. ونحن نرى ارتفاع في التأخر 1 تليها عموما القيم غير الهامة للتخلف الماضي 1. لاحظ أن العينة أسف لا يطابق النمط النظري لل ما الأساسية (1)، وهو أن جميع أوتوكوريلاتيونس للتخلف الماضي 1 سيكون 0.ويمكن أن يكون لعينة مختلفة عينة أسف مختلفة قليلا مبينة أدناه، ولكن من المرجح أن يكون لها نفس السمات العامة. الخصائص النظرية لسلسلة زمنية مع نموذج ما (2) بالنسبة للنموذج ما (2)، تكون الخصائص النظرية كما يلي: لاحظ أن القيم غير الصفرية الوحيدة في أسف النظرية هي للتخلف 1 و 2. أوتوكوريلاتيونس للتخلف العالي هي 0 لذلك، فإن عينة أسف مع أوتوكوريلاتيونس كبيرة في التأخر 1 و 2، ولكن أوتوكوريلاتيونس غير هامة لفترات أعلى يشير إلى احتمال ما (2) نموذج. إيد N (0،1). المعاملات هي 1 0.5 و 2 0.3. لأن هذا هو ما (2)، فإن أسف النظرية لها قيم غير صفرية فقط في التأخر 1 و 2. قيم أوتوكوريلاتيونس غير نازيرو هي مؤامرة من أسف النظري يتبع. وكما هو الحال دائما تقريبا، فإن بيانات العينة لن تتصرف تماما تماما كما النظرية. قمنا بمحاكاة n 150 قيم عينة للنموذج x t 10 w t .5 w t-1 .3 w t-2. حيث w t إيد N (0،1). وتأتي سلسلة المسلسلات الزمنية للبيانات. كما هو الحال مع مؤامرة سلسلة زمنية ل ما (1) عينة البيانات، لا يمكن أن أقول الكثير من ذلك. وتأتي العينة أسف للبيانات المحاكاة. النمط هو نموذجي في الحالات التي قد يكون نموذج ما (2) مفيدة. هناك اثنين من ارتفاع كبير إحصائيا في التأخر 1 و 2 تليها القيم غير الهامة للتخلف الأخرى. لاحظ أنه نظرا لخطأ أخذ العينات، فإن عينة أسف لا تتطابق مع النمط النظري بالضبط. أسف للجنرال ما (q) النماذج A خاصية نماذج ما (q) بشكل عام هو أن هناك أوتوكوريلاتيونس غير الصفرية للفواصل q الأولى و أوتوكوريلاتيونس 0 لجميع التأخر غ س. عدم تفرد الاتصال بين قيم 1 و (rho1) في ما (1) نموذج. في نموذج ما (1)، لأي قيمة 1. فإن المعاملة 1 المتبادلة تعطي نفس القيمة كمثال، تستخدم 0.5 ل 1. ثم استخدم 1 (0.5) 2 ل 1. تحصل على (rho1) 0.4 في كلتا الحالتين. لتلبية القيود النظرية تسمى العكوسة. فإننا نقيد نماذج ما (1) التي لها قيم ذات قيمة مطلقة أقل من 1. وفي المثال الذي أعطيت للتو، ستكون قيمة 0،5 قيمة معلمة مسموح بها، بينما لن تكون 1 10،5 2. قابلية نماذج ما يقال إن نموذج ما قابل للانعكاس إذا كان معادلا جبريا لنموذج أر غير محدود. من خلال التقارب، ونحن نعني أن معاملات أر تنخفض إلى 0 ونحن نعود إلى الوراء في الوقت المناسب. القابلية للانعكاس هي قيود مبرمجة في برامج السلاسل الزمنية المستخدمة لتقدير معاملات النماذج بشروط ما. انها ليست شيئا أننا تحقق في في تحليل البيانات. يتم إعطاء معلومات إضافية حول تقييد إنفرتيبيليتي ل ما (1) نماذج في الملحق. نظرية النظرية المتقدمة. وبالنسبة لنموذج ما (q) مع أسف محدد، لا يوجد سوى نموذج واحد قابل للانعكاس. والشرط الضروري للعكس هو أن للمعاملات قيم مثل المعادلة 1- 1 y-. - q y q 0 لديها حلول ل y التي تقع خارج دائرة الوحدة. رمز R للأمثلة في المثال 1، قمنا بتخطيط أسف النظري للنموذج x t 10 w t. 7w t-1. ومن ثم محاكاة n 150 قيم من هذا النموذج ورسم التسلسل الزمني للعينة و أسف العينة للبيانات المحاكية. وكانت الأوامر R المستخدمة في رسم أسف النظرية: acfma1ARMAacf (ماك (0.7)، lag. max10) 10 تأخر من أسف ل ما (1) مع thta1 0.7 متخلفة 0: 10 يخلق متغير اسمه التأخر التي تتراوح من 0 إلى 10. مؤامرة (1)، و xlemc1 (1، 10)، ييلبر، تيله، أسف الرئيسي ل ما (1) مع theta1 0.7) أبلين (h0) يضيف محور أفقي إلى المؤامرة يحدد الأمر الأول أسف ويخزنه في كائن اسمه acfma1 (اختيارنا من الاسم). تتخطى مؤامرات الأمر المؤامرة (الأمر الثالث) مقابل قيم أكف للتخلف من 1 إلى 10. تسمي معلمة يلب المحور الصادي وتضع المعلمة الرئيسية عنوانا على المؤامرة. لمعرفة القيم العددية لل أسف ببساطة استخدام acfma1 الأمر. وقد أجريت المحاكاة والمؤامرات مع الأوامر التالية. xcarima. sim (n150، قائمة (ماك (0.7))) يحاكي n 150 القيم من ما (1) xxc10 يضيف 10 لجعل المتوسط ​​10. الافتراضية الافتراضية المحاكاة يعني 0. مؤامرة (x، تايب، مينسيمولاتد ما (1) البيانات) أسف (x، زليمك (1،10)، ميناكف لبيانات العينة المحاكاة) في المثال 2، قمنا بتخطيط أكف النظري للنموذج شت 10 w .5 w t-1 .3 w t-2. ومن ثم محاكاة n 150 قيم من هذا النموذج ورسم التسلسل الزمني للعينة و أسف العينة للبيانات المحاكية. كانت الأوامر R المستخدمة acfma2ARMAacf (ماك (0.5،0.3)، lag. max10) acfma2 متخلفة 0: 10 مؤامرة (تأخر، acfma2، زليمك (1،10)، يلابر، تيبه، أسف الرئيسي ل ما (2) مع ثيتا 0.5، (h0) xcarima. sim (n150، قائمة (ماك (0.5، 0.3))) xxc10 مؤامرة (x، تيب، الرئيسية مقلد ما (2) سلسلة أسف (x، زليمك (1،10) ميناكف لمحاكاة ما (2) البيانات) الملحق: دليل على خصائص ما (1) للطلاب المهتمين، وهنا هي البراهين للخصائص النظرية للنموذج ما (1). الفرق: النص (شت) النص (wt theta1 w) 0 النص (وت) النص (theta1w) sigma2w theta21sigma2w (1theta21) sigma2w) عندما h 1، التعبير السابق 1 ث 2. لأي h 2، التعبير السابق 0 والسبب هو أنه، بحكم تعريف استقلالها. E (w w w j) 0 لأي k j. علاوة على ذلك، لأن w w t يعني 0، E (w j w j) E (w j 2) w 2. لسلسلة زمنية، تطبيق هذه النتيجة للحصول على أسف المذكورة أعلاه. نموذج ما لا يمكن عكسه هو واحد التي يمكن أن تكون مكتوبة كنموذج لانهائية أجل أر التي تتقارب بحيث معاملات أر تتلاقى إلى 0 ونحن نتحرك بلا حدود مرة أخرى في الوقت المناسب. تثبت جيدا إنفرتيبيليتي ل ما (1) نموذج. ثم نستبدل العلاقة (2) ل w t-1 في المعادلة (1) (3) (زت وت theta1 (z - theta1w) wttata1z - theta2w) في الوقت t-2. المعادلة (2) يصبح نحن ثم بديلا العلاقة (4) ل w t-2 في المعادلة (3) (زت وت ثيتا z - theta21w wt theta1z - theta21 (z - theta1w) wt theta1z - theta12z theta31w) إذا كان علينا أن نواصل ( (زت وت theta1 z - theta21z thta31z - theta41z النقاط) لاحظ مع ذلك أنه إذا كان 1 1، فإن المعاملات ضرب ضرب من z زيادة (بلا حدود) في الحجم ونحن نعود إلى الوراء في زمن. ولمنع ذلك، نحتاج إلى 1 لتر 1. هذا هو شرط لنموذج ما (1) قابل للانعكاس. لانهائية النظام ما نموذج في الأسبوع 3، نرى أيضا أن أر (1) نموذج يمكن تحويلها إلى أمر لانهائي ما نموذج: (شت - mu وت phi1w نقاط phi21w phik1 ث النقاط مجموع phij1w) هذا الجمع من الماضي شروط الضوضاء البيضاء هو معروف كما التمثيل السببي لل أر (1). وبعبارة أخرى، x t هو نوع خاص من ما مع عدد لا حصر له من المصطلحات تعود في الوقت المناسب. وهذا ما يسمى أمر لا حصر له ما أو ما (). أمر محدود ما هو أمر لانهائي أر وأي أمر محدود أر هو أمر لانهائي ما. أذكر في الأسبوع 1، لاحظنا أن شرط ل أر ثابتة (1) هو أن 1 lt1. يتيح حساب فار (x t) باستخدام التمثيل السببي. هذه الخطوة الأخيرة تستخدم حقيقة أساسية حول السلسلة الهندسية التي تتطلب (phi1lt1) وإلا فإن السلسلة تتباعد. التنقل

No comments:

Post a Comment